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Numerical study of the development of bulk scale-free structures upon growth
of self-affine aggregates
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During the last decade, self-affine geometrical properties of many growing aggregates, originated in a wide
variety of processes, have been well characterized. However, little progress has been achieved in the search of
a unified description of the underlying dynamics. Extensive numerical evidence is given showing that the bulk
of aggregates formed upon ballistic aggregation and random deposition with surface relaxation processes can
be broken down into a set of infinite scale invariant structures called ‘‘trees.’’ These two types of aggregates
have been selected because it has been established that they belong to different universality classes: those of
Kardar-Parisi-Zhang and Edward-Wilkinson, respectively. Exponents describing the spatial and temporal scale
invariance of the trees can be related to the classical exponents describing the self-affine nature of the growing
interface. Furthermore, those exponents allow us to distinguish either the compact or noncompact nature of the
growing trees. Therefore, the measurement of the statistic of the process of growing trees may become a useful
experimental technique for the evaluation of the self-affine properties of some aggregates.
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I. INTRODUCTION

The study of growth processes has recently attracted
siderable attention as a consequence of many factors su
the formulation of the theory of fractals since the pioneer
work of Mandelbrot@1#, the development of new experimen
tal techniques~e.g., scanning tunneling microscopy! and the
availability of computer facilities for graphical and nume
cal simulations. So far, it is well established that spatial sc
ing structures originated from growth processes are
tremely common in nature. In fact, a great variety of syste
exhibit self-affinities over extended ranges of spatial a
temporal scales@2–5#. Therefore, extensive theoretical an
experimental research has focused on the characterizatio
the self-affine nature of the structures resulting from grow
processes@2–5#.

The phenomenological scaling approach to the dyna
evolution of a self-affine interface early developed by Fam
and Vicsek@6,7# has become a useful tool to character
self-affine roughness. Considering a flat,d-dimensional sur-
face at timet50 and pointing the attention to the growin
process that occurs essentially parallel to the surface,
possible to assume without loss of generality that there ex
a well-defined growth direction and that the interface can
described by a functionh(x,t) that gives the height of the
interface at timet and positionx. Of course, such height i
measured from the initial flat surface att50. If the interface
cannot be described by a single valued function ofx, the
functionh(x,t) gives the maximum height of the interface
x. Considering a section of the sample having a typical s
L ~in each of thed-dimensions of the surface! the average
height of the interface at timet is defined as

^h~ t !&5
1

~Ld!
(

x
h~x,t !, ~1!
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where the summation runs over allx’s. The interface width
w(L,t) at time t may be defined by the rms of the heig
fluctuations given by

w~L,t !5~^h2~ t !&2^h~ t !&2!1/2. ~2!

The Family-Viscek scaling approach assumes that

w~L,t !5LaF~ t/Lz!, ~3!

whereF(y)}yb for y!1 andF(y)→const fory@1, with
z5a/b. Also a, b, andz are the roughness, growing, an
dynamic exponents, respectively.

The dynamic exponentz describes the evolution of a cor
related region with time: initially different parts of the inte
face are independent, but regions of correlated roughn
form over time and their size grows asj}t1/z. Thus, for a
finite sample of sideL and t→` the width of the growing
interface reaches a statistically stationary state so thatw(L)
}La. Furthermore, the overall width of the interface grow
as tb until it saturates atLa.

In contrast to the progress achieved in the characteriza
of the self-affine behavior of interfaces, little attention h
been drawn to the description of the internal structure of
growing system. In this work, extensive numerical eviden
is presented showing that the bulk of two archetypi
growth models, namely, ballistic deposition and rando
deposition with surface relaxation, can effectively be rat
nalized on the basis of a treeing process; i.e, any grow
structure can be thought as the superposition of individ
trees. These individual trees can be defined as follows: in
case of the ballistic deposition model@Fig. 1~a!#, a newly
deposited particle is assumed to belong to the same tre
that of the nearest neighbor particle where it is attached
the deposited particle has more than one nearest neig
belonging to different trees such as particleA in Fig. 1~a!,
©2002 The American Physical Society15-1
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ROMÁ, HOROWITZ, AND ALBANO PHYSICAL REVIEW E 66, 066115 ~2002!
one of them is selected at random and the particle is in
porated into that tree . In the case of the random deposi
with surface relaxation model@Fig. 1~b!#, a newly deposited
particle is assumed to belong to the tree corresponding to
impingement site, before its eventual relaxation. See a
Fig. 1 caption for further details.

Those trees that spread out incorporating additional gr
ing centers; e.g., capturing particles, developing n
branches, etc., are said to be ‘‘alive’’@for example, trees 1,2
and 4 in Figs. 1~a! and 1~b!#. In contrast, some other tree
may stop their growth due to shadowing by surround
growing trees, so they become ‘‘dead trees’’ such as tree
Figs. 1~a! and 1~b!. The structure of dead trees is frozen
the sense that it cannot be modified by any further growth
order to determine the distribution of dead trees one st
the growing process following the specified set of rules a
after some fixed time all growing points, i.e., all sites of t
aggregate where further growth is still possible, are identifi
as seeds for these trees. Therefore, the number of such
becomes the initial number of trees. During the subsequ
process, the competition between growing trees domin
the dynamics. Some trees become dead~frozen! and eventu-
ally only a single tree may remain.

Within this context, the aim of this work is to perform a
extensive numerical investigation of the dynamics of evo
ing trees of two growing processes, namely, random dep
tion with surface relaxation~RDSR! and ballistic deposition

FIG. 1. Schematic view of the deposition of particles formi
trees. In~a! the particles are deposited with the rules of ballis
deposition. ParticleA belongs to tree 1 or 2 with the same probab
ity, particleB belongs to tree 2, and particlesC andD belong to tree
4. The growth of tree 3 is stopped after particleC deposition and it
becomes a frozen tree. In~b! the particles are deposited with th
rules of random deposition with surface relaxation. ParticleA,
which belongs to tree 2, can either relax to the right or to the
with the same probability. Notice that in the former, particleA par-
tially shadows tree 1, while in the latter it simply becomes attac
to tree 2. ParticleB belongs to tree 2 but it relaxes on top of tree
causing partial shadowing. ParticleC belongs to tree 4 and afte
relaxation on top of tree 3 causes the growth of that tree to stop
that it becomes a frozen tree. Finally, particleD belongs to tree 4.
06611
r-
n

he
o

-

g
in

n
ts
d

d
eds
nt
es

-
i-

~BD!. Furthermore, tests of the scaling relationships relat
critical exponents of the treeing process to those describ
the self-affine nature of the aggregate are performed in
mensions 1<d<5. The RDSR and BD processes have be
selected because they belong to different universality clas
namely, the Edward-Wilkinson~EW! @4,8# and Kardar-
Parisi-Zhang~KPZ! @4,9#, respectively.

The manuscript is organized as follows: in Sec. II detai
definitions and a discussion of the scaling exponents desc
ing the treeing process and their relationships to expon
related to the self-affine nature of the aggregate are review
In Sec. III a brief description of both the RDSR and B
models and the numerical simulation technique is provid
The results are presented and discussed in Sec. IV while
conclusions are stated in Sec. V.

II. TREEING AND SELF-AFFINITY:
SCALING RELATIONSHIPS

Let us consider an aggregate that is growing abov
d-dimensional substrate. Such aggregate is formed by t
that compete with each other leading to the entire patte
The structural properties of both the trees and the resul
entire aggregate are determined by the growth mechanism
these context, Racz and Vicsek@10# have shown that for
self-similar fractals the tree size distribution that results fro
the competitive growth process is related to the structure
both the entire aggregate and the individual trees. Sub
quently, this concept was extended to the case of self-af
objects@11#.

In the following paragraphs we will briefly outline th
well-known @10,11# relevant definitions and the scaling rel
tionship in order to establish the framework for the sub
quent numerical study. Pointing our attention to dead tree
sizes (s is the number of particles belonging to the tree! one
has that both the rms height (hs) and the rms width (ws) of
the trees obey simple power laws given by

hs}sn i ~4!

and

ws}sn', ~5!

wheren i andn' are the correlation length exponents paral
and perpendicular to the growing direction of the aggreg
@11#. These exponents may be different for self-affine~aniso-
tropic! aggregates, while for self-similar objectsn i5n' .

Assuming thatNT is the total number of particles of th
aggregate, the average particle numberN per unit area of the
substrate is given by

N5NT /Ld, ~6!

where particles grow on ad-dimensional hypercubic sub
strate of size L in aD-dimensional space.

Defining the number of trees withs particlesNs(N) in the
whole aggregate one has that

ft

d

so
5-2
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NT5(
s

sNs~N!, ~7!

and the cluster size distributionns(N) that gives the prob-
ability of having trees of sizes per unit area of the substrat
is given by

ns~N!5Ns~N!/Ld. ~8!

Replacing Eqs.~6! and ~8! in Eq. ~7! gives @10,11#

N5(
s

sns~N!. ~9!

During the competition between trees along the evolut
of the aggregate it may occur that the existence of la
neighboring trees may inhibit the growing of smaller on
This competing process ultimately leads to the death of so
trees that become ’’frozen’’ within the underlying aggrega
These prevailing large trees continue the competition wit
more distant trees in a dynamic process. Since this situa
takes place on all scales, it is reasonable to expect tha
cluster size distribution should exhibit a power-law behav
so that

ns~N!;s2t f ~ss/N!, ~10!

wheret is an exponent andf (y) is a scaling~cutoff! function
so that their asymptotic behavior is given byf (y)'1 for y
!1 and f (y)'0 for y@1.

Substituting Eq.~10! in Eq. ~9! and after some algebr
one can obtain@10#

s522t. ~11!

Furthermore, recalling that the competition among tre
actually is a dynamic process evolving in time (t}Nt), one
has that the survival time distribution of the trees (nt) may
also obey a simple power-law behavior given by

nt}t2g, ~12!

whereg is an exponent. Therefore, one can establish a r
tionship between the size and the survival timet of the dead
trees so that

s;t1/x, ~13!

where the exponentx is given by

x5~t21!/~g21!. ~14!

Also, it is reasonable to expect that for the treeshs}t, so
inserting this relation in Eq.~13! and comparing it with equa
tion Eq. ~4! give

x5n i . ~15!

Let us now establish a relationship between the grow
trees and the properties of the aggregate. Assuming tha
aggregate is self-similar~even compact! with fractal dimen-
sion D, its rms heighth is expected to scale as
06611
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h;Nn l, ~16!

for h!L , wheren l is an exponent@11#.
However, for length scales@h the aggregate is uniform

in the remainingd lateral directions. This fact, in connectio
to Eqs.~6! and ~16! gives @11#

D5n l
211d. ~17!

The rms heighth of the aggregate can be rewritten as

h25
1

NT
(

i
hi

25
1

NLd (
s

S (
i Ps

hi
2DNs~N!, ~18!

wherehi is the distance of thei th particle from the substrate
Taking into account that the average rms height of a tree
size s is given by

hs
25

1

s (
i Ps

hi
2 , ~19!

Eq. ~18! can be rewritten as

h25
1

N (
s

shs
2ns~N!, ~20!

where Eq.~8! has been used.
Replacing Eqs.~4!, ~10!, and ~16! in Eq. ~20! and per-

forming some algebra, one obtains the scaling relations
@11#

2n l5211~212n i2t!/s. ~21!

Now, using Eqs.~11! and ~17! it follows that

s5n i /n l5n i~D2d!, ~22!

and substituting Eq.~22! in Eq. ~11! one has@11#

t522n i~D2d!. ~23!

The scaling relationship~23! links the exponentt related
to the tree size distribution to the correlation length expon
of the aggregaten i . It is interesting to notice thatn' is
absent in Eq.~23! due to the fact that during the competitiv
growth process larger trees prevent smaller ones from gr
ing. Scale invariance in the size distribution of the trees@Eq.
~10!# is a result of this competitive process that is main
governed by the tree hight@Eq. ~4!#.

A typical example for the application of Eq.~23! is the
growth of compact aggregates whereD5d11. So, Eq.~23!
becomes

t522n i . ~24!

Also, using Eqs.~14!, ~15!, and~23! one obtains

g51/n i . ~25!

There is no reason to expect that a compact aggre
may result from the addition of compact trees. In fact, t
volume of trees of sizes (vs) scales as
5-3
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ROMÁ, HOROWITZ, AND ALBANO PHYSICAL REVIEW E 66, 066115 ~2002!
vs;hsws
D21;sn i1(D21)n', ~26!

and we define the following relationship between the volu
and the number of particlesv;sp, wherep is an exponent,
so one has

n i1~D21!n'5p, ~27!

where for compact trees one hasp51, while for noncom-
pact trees one hasp.1.

Identifying the parallel correlation length withw(s) and
the time withh(s), one has@13#

z5n i /n' . ~28!

Using Eqs.~14!, ~15!, ~23!, ~27!, and ~28! for trees in a
compact aggregate (D5d11), we can obtain the following
relationships:

n i5pz/~z1D21!, ~29!

n'5p/~z1D21!, ~30!

t5@~22p!z12~D21!#/~z1D21!, ~31!

and

g5~z1D21!/~pz!. ~32!

All these relationships establish links among expone
that characterize the self-affine nature of the interface of
aggregate (z5a/b) and those corresponding to the descr
tion of the treeing process occurring in the bu
(n i ,n' ,t,g,p).

III. THE RDSR AND BD MODELS: SIMULATION
METHODS AND MESOSCOPIC EQUATIONS

In the random deposition with surface relaxation~RDSR!
model a particle is released from a random position ab
the surface and falls vertically until it reaches the top of
selected column. Of course, such particle is initially loca
at a distance larger than the maximum height of the interfa
The deposited particle is allowed to relax to a nearest ne
bor column if the height of the neighboring column is low
than that corresponding to the selected column. Further
tails on RDSR aggregates can be found in Refs.@4,8#. Con-
cerning the dynamics of tree formation, it is worth reme
bering the procedure used to define a tree. In the case o
RDSR model, a newly deposited particle is assumed to
long to the tree corresponding to the impingement site,
fore its eventual relaxation.

The ballistic deposition~BD! model is rather simple to
describe: a particle is released from a random position ab
the interface of lengthL. Subsequently, the particle follows
straight vertical trajectory until it reaches the interfac
whereupon it sticks. In contrast to the RDSR model, in
BD model no further relaxation of the particle is considere
Snapshot configurations of BD aggregates, and further
tails on the deposition rules can be found in Refs.@4,9#. Let
us also remember that, in this case, trees are formed as
06611
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ing that any newly deposited particle belongs to the sa
tree as that of the nearest neighbor particle where it is
tached. If the deposited particle has more than one nea
neighbor belonging to different trees, one of them is selec
at random and the particle is incorporated into that tree.

RDSR and BD aggregates are grown in the direction p
pendicular tod-dimensional substrate, i.e., in (d11) dimen-
sions, using samples of different sizes (Ld) with 1<d<5.
Simulation results are averaged over many different ru
depending onL and d. A Monte Carlo time step~mcs! in-
volves the deposition ofLd particles.

The interface of these aggregates is defined as the s
particles that are placed at the highest position of each
umn. So, the mean height of the interface@Eq. ~1!# and the
interface width@Eq. ~2!# can be calculated and both are me
sured in lattice units~LU!. It is well known that these aggre
gates are self-affine and the width of the growing interfa
w(L,t) scales as Eq.~3! @4#.

In contrast to the microscopic details of the growin
mechanisms of the interface in both models, continuo
equations focus on the macroscopic aspects of the roughn
Essentially, the aim is to follow the evolution of the coars
grained height functionh(x,t) using a well-established phe
nomenological approach that takes into account all the
evant processes that survive at a coarse-grained level.

This procedure normally leads to stochastic nonlinear p
tial differential equations that may be written as follow
@4,8,9,12,14,15#:

]h~x,t !

]t
5Gi$h~x,t !%1F1h~x,t !, ~33!

where the indexi symbolically denotes different processe
Gi$h(x,t)% is a local functional that contains the various su
face relaxation phenomena and only depends on the sp
derivatives ofh(x,t) since the growth process is determin
by the local properties of the surface. Also,F denotes the
mean deposition rate andh(x,t) is the deposition noise tha
determines the fluctuations of the incoming flux around
mean valueF. It is usually assumed that the noise is spatia
and temporally uncorrelated, so fluctuations are given b
Gaussian white noise

^h~x,t !&50, ~34!

and

^h~x,t !h~x8,t8!&52Cdd~x2x8!d~ t2t8!, ~35!

where the brackets denote ensemble averaging,C is the
strength of the fluctuations, andd is the spatial dimension o
the surface.

The RDSR model can be described by the Edwar
Wilkinson equation given by@4,8,12,16#

]h~x,t !

]t
5F1no¹2h~x,t !1h~x,t !, ~36!

whereno plays the role of an effective surface tension, sin
theno¹2h(x,t) term tends to smooth the interface. Equati
5-4
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~36! can be solved in Fourier space and the following valu
of the exponents are obtained:z52, a5(22d)/2, andb
5(22d)/4. So, there exists an upper critical dimensiondc
52 above which one hasa50 andb50.

The BD model can be described by the Kardar-Par
Zhang equation given by@9#

]h~x,t !

]t
5F1n¹2h1

l

2
~¹h!21h~x,t !, ~37!

wherel plays the role of an effective lateral growth. In th
equation, the exponents satisfy the scaling relation

z1a52, ~38!

as a consequence of Galilean invariance in the related
gers equation@17#. In the usual field theory approach, a pe
turbation theory is defined with respect to the nonlinear te
(l). The corresponding renormalization group reveals@18#
that the physics of the KPZ is related to a strong coupl
fixed point, which is inaccessible by perturbative metho
Except ford51, where, thanks to a fluctuation-dissipatio
theorem, an analytic solution is possible. In this case one
a51/2, b51/3, so thatz53/2. Extensive numerical simu
lations have been carried out for restricted solid on so
models @19#. These are discrete models that belong to
KPZ universality class@20# and these studies show a gradu
decrease in the value ofa, without any evidence for an
upper critical dimension. In the same direction a recent st
performed using a nonperturbative renormalization of
KPZ equation suggests a gradual decrease in the valuea
@21#. On the other hand, several analytical approaches@22#
suggest an upper critical dimensiondc54 above which one
should havea50.

IV. RESULTS AND DISCUSSION

Figure 2 shows the tree distribution functions correspo
ing to the RDRS model in dimension 1<d<5. The tree size
distribution@Fig. 2~a!# for d51 exhibits a power law accord
ing to Eq. ~10! with exponentt51.3560.03. For higher
dimensionsns also exhibits power law-behavior but th
slopet51.5060.01 becomes independent of the dimensio
ality. A similar behavior is shown by the survival time di
tribution @Fig. 2~b!# that has slopesg51.5460.03 for d51
andg52.0060.03 ford>2, respectively. The measured e
ponents are listed in Table I.

The distribution functions of the BD model also exhib
power-law behavior@Fig. 3#. However, in contrast to the cas
of RDSR, for bothns @Fig. 3~a!# andnt @Fig. 3~b!# the slopes
depend on the dimensionality. The measured exponents
listed in the fifth and ninth columns of Table II.

The behavior of the rms height of the trees as a funct
of the tree sizes is shown in Figs. 4~a! and 4~b! for RDSR
and BD, respectively. Again, nice power laws are observe
all cases. For the RDSR model a clear change in the slop
observed betweend51 andd>2, where for the higher di-
mensions the slopes are independent of the dimension
~see third column of Table I!. For the BD model the slope
are different in all dimensions~see third column of Table II!.
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Results shown in Fig. 5 for the rms width of the tre
(ws) versuss are also fully consistent with the previous r
sults and are listed in the second column of Tables I and

Based on our numerical estimation of the exponentst,g,
n' , andn i we are in a condition to check the scaling rel
tionships discussed in Sec. II that are summarized by E
~24!, ~27!, ~28!, ~31!, ~32!, and ~38!, where the latter only
holds for the BD model.

The results obtained for the RDSR model~Table I! show
that the exponentsn' , n i , t, andg are independent of the
dimensionality of the surface ford>2, as expected from
Figs. 1–4. These results are consistent with the fact thad
52 is the upper critical dimension of the EW universali
class.

Inserting the exact valuez52 for the EW universality
class in Eq.~31! the ‘‘theoretical’’ estimation oft can be
obtained~seventh column of Table I!, which is in excellent
agreement with the numerical data. Also, inserting the m
sured values ofn i in equation~24! ~see the sixth column o
Table I! excellent agreement with the measured exponent
obtained. The quality of the achieved agreement is also

FIG. 2. Log-log plots of the tree distribution functions corr
sponding to the RDRS model in dimensions 1<d<5. ~a! The tree
size distribution, where the sizes is given by the number of par
ticles of each tree.~b! The survival time distribution, where the tim
is measured in seconds.
5-5
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TABLE I. List of exponentsn' , n i , t ~fifth column! and g ~eighth column! measured for the RDSR
model for dimensions 1<d<5. The values of theoretical estimations oft andg are obtained takingz52 in
Eq. ~31! ~seventh column! and Eq.~32! ~tenth column!, respectively. For these estimationsp51 for d<2
andp55/4, 3/2, 7/4 ford53,4,5 have been used, respectively. The values ofp obtained using Eq.~27! are
shown in the fourth column. The values oft andg obtained using Eqs.~24! and~25! are shown in the sixth
and ninth columns, respectively.

D n' n i p t t @Eq. ~24!# t(t) g g @Eq. ~25!# g(t)

111 0.35~2! 0.63~1! 0.98~2! 1.35~3! 1.37~1! 4/3 1.54~3! 1.59~3! 3/2
211 0.27~2! 0.50~1! 1.02~4! 1.49~1! 1.50~1! 3/2 1.98~5! 2.00~4! 2
311 0.26~2! 0.50~1! 1.28~6! 1.50~3! 1.50~1! 3/2 2.00~2! 2.00~4! 2
411 0.25~2! 0.50~1! 1.50~8! 1.50~1! 1.50~1! 3/2 1.99~2! 2.00~4! 2
511 0.25~1! 0.49~1! 1.74~4! 1.50~2! 1.51~1! 3/2 1.99~4! 2.04~4! 2
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cellent when comparing theoretical and estimated@Eq. ~25!#
values ofg, which is shown in the tenth and ninth column
of Table I, respectively.

For the case of the RDSR model it is interesting to not
that the exponentp ~fourth column of Table I! departs from

FIG. 3. Log-log plots of the tree distribution functions corr
sponding to the BD model in dimensions 1<d<5. ~a! The tree size
distribution where the sizes is given by the number of particles o
each tree.~b! The survival time distribution, where the time is me
sured in seconds.
06611
e

the trend exhibited by the other exponents. In fact, whilep
;1 for d<2, such an exponent increases monotonica
with the dimensionality ford.2. Roughly, an average incre
ment of 1/4 inp for each additional dimension is estimate
The value ofp51 corresponds to the development of com
pact trees@see Eqs.~26! and~27!#, so it is concluded that for
d.2 the trees leading to the formation of RDSR aggrega
are noncompact objects. Therefore, the branches of the
become interweaved forming complex patterns.

Our results for the BD model are listed in Table II. In th
case the measured exponents (n' ,n i , t, andg) depend on
the dimensionality, as expected from Figs. 2–5. The m
sured values oft ~fifth column of Table II! are in agreemen
with the estimation obtained using Eq.~24! ~sixth column of
Table II! for d<4. Ford55 this estimation presents a sma
deviation due to the large error involved in the evaluation
the exponent. However, a slight increment oft with the di-
mensionality is found in both cases@the measured exponen
and Eq. ~24!#. This result is in contrast to the conjectu
stating thatd54 may be the upper critical dimension of th
KPZ universality class@19#. Furthermore, using Eqs.~31!
and~38! and the values ofa reported in Ref.@25# two addi-
tional comparisons can be made: inserting the valuesz
obtained using renormalization group calculations~numeri-
cal simulation! in Eq. ~31! gives the values oft listed in the
seventh~eighth! column of Table II. In both cases, excelle
agreement with the measured exponents is found.

We have to recognize large errors in our evaluation og
for the BD model@see Fig. 2~b!# that prevent reliable esti
mations ford>4. However, comparisons with results o
tained using Eq.~25! ~tenth column of Table II!, renormal-
ization group calculation~11th column of Table II! and
numerical evaluation~12th column of Table II!, exhibit the
trend already observed by our direct measurement ofg.

It should also be noticed thatp;1 ~within error bars!
pointing out that BD aggregates are built up by comp
trees at least ford<4, in contrast with our previous result
obtained for RDSR aggregates ford.2.

V. CONCLUSIONS

Extensive numerical evidence is provided showing t
the bulk of two typical growth models, belonging to both th
KPZ and EW universality classes, can be rationalized
5-6
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TABLE II. List of exponentsn' , n i , t ~5th column!, andg ~9th column! measured for the BD model for dimensions 1<d<5. The
estimations performed using Eqs.~24! and~25! are shown in the 6th and 10th columns, respectively. The exponents obtained using Eq~31!,
~32!, and~38!, p51 anda values obtained by renormalization group calculation~RG!, and numerical simulations~NS! reported in Ref.@21#
are shown in the 7th, 8th, 11th, and 12th columns. The exponentp is evaluated using Eq.~27! ~4th column!.

D n' n i p t t @Eq. ~24!# t (RG) t (NS) g g @Eq. ~25!# g (RG) g (NS)

111 0.40~1! 0.60~1! 1.00~2! 1.40~1! 1.40~1! 1.40 1.40 1.70~2! 1.66~3! 1.66 1.66
211 0.29~1! 0.45~1! 1.03~2! 1.57~1! 1.55~1! 1.54 1.55 2.3~1! 2.22~5! 2.22 2.24
311 0.23~2! 0.38~1! 1.07~6! 1.65~1! 1.62~1! 1.63 1.64 3.2~2! 2.63~7! 2.75 2.77
411 0.21~4! 0.34~2! 1.18~16! 1.70~2! 1.66~2! 1.69 1.70 2.94~15! 3.27 3.30
511 0.33~4! 1.75~3! 1.67~4! 1.73 1.73 3.0~3! 3.78 3.76
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terms of a treeing process. Scaling relationships, linking
ponents relevant to the treeing process with standard
namic exponents are reviewed and tested numerically in
mensions 1<d<5. So, our main conclusions ar
summarized in Tables I and II where all the measured ex
nents are listed and compared to theoretical predictions.
concluded that BD trees are compact objects~at least up to

FIG. 4. ~a! and~b! Log-log plots of the rms height of the trees a
a function of the tree sizes for the RDSR model and the BD mode
respectively. The rms height is measured in LU and the sizes is
given by the number of particles of each tree.
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d54) while RDSR trees are noncompact objects ford.2
leading to interweaved complex structures. Based on the
lidity of Eqs. ~29!–~32!, and since above the upper critic
dimension the exponentsn i , n' , t, andg remain constant
for self-similar aggregates, it can be stated that above
upper critical dimension the change in the dimensionality

FIG. 5. ~a! Log-log plots of rms width of the trees as a functio
of the tree sizes for the RDSR model.~b! Log-log plots of the rms
width of the trees as a function of the tree sizes for the BD model.
The rms width is measured in LU and the sizes is given by the
number of particles of each tree.
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the aggregate implies thatp must also change. Therefore, w
conjectured that all kinds of self-affine aggregates ab
their upper critical dimension can be rationalized in term
the superposition of noncompact trees.

Summing up, it is shown that the evolution of the treei
statistics is a suitable method for the characterization of
growing aggregates with promising applications in expe
mental situations. In fact, it is well known that the electr
chemical deposition method in thin cells provides a rat
simple experimental setup for the observation of a wide
riety of self-affine growing patterns@23,24#. In this case the
dynamics of growing trees leading to frozen structures
easily be observed and the evaluation of the tree size di
bution can be obtained straightforwardly after proper dig
.
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lization of the images of the aggregates. Another field
application is the study of polycrystalline thin film growth b
scanning tunneling microscopy@25,26# and atomic force mi-
croscopy@27#. In these cases the direct evaluation of t
number of crystallites as a function of the deposit heig
accounts for the number of frozen crystallites~i.e., the trees
of the growing aggregate! and the crystallite size distribution
can be evaluated.
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