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During the last decade, self-affine geometrical properties of many growing aggregates, originated in a wide
variety of processes, have been well characterized. However, little progress has been achieved in the search of
a unified description of the underlying dynamics. Extensive numerical evidence is given showing that the bulk
of aggregates formed upon ballistic aggregation and random deposition with surface relaxation processes can
be broken down into a set of infinite scale invariant structures called “trees.” These two types of aggregates
have been selected because it has been established that they belong to different universality classes: those of
Kardar-Parisi-Zhang and Edward-Wilkinson, respectively. Exponents describing the spatial and temporal scale
invariance of the trees can be related to the classical exponents describing the self-affine nature of the growing
interface. Furthermore, those exponents allow us to distinguish either the compact or noncompact nature of the
growing trees. Therefore, the measurement of the statistic of the process of growing trees may become a useful
experimental technique for the evaluation of the self-affine properties of some aggregates.
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[. INTRODUCTION where the summation runs over als. The interface width
w(L,t) at timet may be defined by the rms of the height
The study of growth processes has recently attracted coriluctuations given by
siderable attention as a consequence of many factors such as
the formulation of the theory of fractals since the pioneering w(L,t)=((h?(t))—(h(1))?)*2 2
work of Mandelbro{ 1], the development of new experimen-
tal techniquege.g., scanning tunneling microscopnd the ~ The Family-Viscek scaling approach assumes that
availability of computer facilities for graphical and numeri-
cal simulations. So far, it is well established that spatial scal- w(L,t)=L*F(t/L?), ()]
ing structures originated from growth processes are ex-
tremely common in nature. In fact, a great variety of systemavhereF(y)ecy? for y<1 andF(y)—const fory>1, with
exhibit self-affinities over extended ranges of spatial andz=a/B. Also «, B, andz are the roughness, growing, and
temporal scale§2-5]. Therefore, extensive theoretical and dynamic exponents, respectively.
experimental research has focused on the characterization of The dynamic exponertdescribes the evolution of a cor-
the self-affine nature of the structures resulting from growthrelated region with time: initially different parts of the inter-
processe$2—5]. face are independent, but regions of correlated roughness
The phenomenological scaling approach to the dynamigorm over time and their size grows gst'. Thus, for a
evolution of a self-affine interface early developed by Familyfinite sample of side. andt—c the width of the growing
and Vicsek[6,7] has become a useful tool to characterizeinterface reaches a statistically stationary state sovtiihj
self-affine roughness. Considering a fldtimensional sur- =L¢. Furthermore, the overall width of the interface grows
face at timet=0 and pointing the attention to the growing ast” until it saturates at.“.
process that occurs essentially parallel to the surface, it is In contrast to the progress achieved in the characterization
possible to assume without loss of generality that there existef the self-affine behavior of interfaces, little attention has
a well-defined growth direction and that the interface can béeen drawn to the description of the internal structure of the
described by a functioh(x,t) that gives the height of the growing system. In this work, extensive numerical evidence
interface at timet and positionx. Of course, such height is is presented showing that the bulk of two archetypical
measured from the initial flat surfacetat 0. If the interface  growth models, namely, ballistic deposition and random
cannot be described by a single valued functionxpfthe  deposition with surface relaxation, can effectively be ratio-
functionh(x,t) gives the maximum height of the interface at nalized on the basis of a treeing process; i.e, any growing
x. Considering a section of the sample having a typical siz&tructure can be thought as the superposition of individual
L (in each of thed-dimensions of the surfagehe average trees. These individual trees can be defined as follows: in the
height of the interface at timeis defined as case of the ballistic deposition modgtig. 1(a)], a newly
deposited particle is assumed to belong to the same tree as
1 that of the nearest neighbor particle where it is attached. If
(h(t))=—— > h(x,1), (1)  the deposited particle has more than one nearest neighbor
(LY X belonging to different trees such as partiélén Fig. 1(a),
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(a) A 8 o (BD). Furthermore, tests of the scaling relationships relating
(m] oo
} b

critical exponents of the treeing process to those describing
the self-affine nature of the aggregate are performed in di-
mensions £d=<5. The RDSR and BD processes have been
selected because they belong to different universality classes,
namely, the Edward-WilkinsonEW) [4,8] and Kardar-
Parisi-ZhangKPZ) [4,9], respectively.

The manuscript is organized as follows: in Sec. Il detailed
definitions and a discussion of the scaling exponents describ-
ing the treeing process and their relationships to exponents
related to the self-affine nature of the aggregate are reviewed.
In Sec. Il a brief description of both the RDSR and BD
models and the numerical simulation technique is provided.
The results are presented and discussed in Sec. IV while the
conclusions are stated in Sec. V.

—[Odo

Il. TREEING AND SELF-AFFINITY:
FIG. 1. Schematic view of the deposition of particles forming SCALING RELATIONSHIPS
trees. In(a) the particles are deposited with the rules of ballistic
deposition. Particlé\ belongs to tree 1 or 2 with the same probabil-

ity, particleB belongs to tree 2, and particl€andD belong to tree

Let us consider an aggregate that is growing above a
d-dimensional substrate. Such aggregate is formed by trees
4. The growth of tree 3 is stopped after parti€laleposition and it that compete with eagh other leading to the entire patte_rn.
becomes a frozen tree. Ii) the particles are deposited with the Th‘? structural properties Of,bOth the trees and the re;ultlng
rules of random deposition with surface relaxation. Partisle €ntire aggregate are determined by the growth mechanism. In
which belongs to tree 2, can either relax to the right or to the lefth€Se context, Racz and Vics¢kO] have shown that for
with the same probability. Notice that in the former, partiélpar- ~ Self-similar fractals the tree size distribution that results from
tially shadows tree 1, while in the latter it simply becomes attachedhe competitive growth process is related to the structure of
to tree 2. Particld belongs to tree 2 but it relaxes on top of tree 3 both the entire aggregate and the individual trees. Subse-
causing partial shadowing. Partic belongs to tree 4 and after quently, this concept was extended to the case of self-affine
relaxation on top of tree 3 causes the growth of that tree to stop, sobjects[11].
that it becomes a frozen tree. Finally, parti€ebelongs to tree 4. In the following paragraphs we will briefly outline the
well-known[10,1] relevant definitions and the scaling rela-

one of them is selected at random and the particle is incofionship in order to establish the framework for the subse-
porated into that tree . In the case of the random depositiofU€nt numerical study. Pointing our attention to dead trees of
with surface relaxation mod¢Fig. 1(b)], a newly deposited Sizes (s is the number of .part|cles belonging to the freee
particle is assumed to belong to the tree corresponding to thas that both the rms heighttd) and the rms widths) of
impingement site, before its eventual relaxation. See als§1e trees obey simple power laws given by
Fig. 1 caption for further details.

Those trees that spread out incorporating additional grow- hgocs”l (4)
ing centers; e.g., capturing particles, developing new
branches, etc., are said to be “aliveor example, trees 1,2, and
and 4 in Figs. 1a) and 1b)]. In contrast, some other trees
may stop their growth due to shadowing by surrounding
growing trees, so they become “dead trees” such as tree 3 in

Figs. 1@ and Xb). The structure of dead trees is frozen in h d th lation lenath ¢ llel
the sense that it cannot be modified by any further growth. ifvnerév andy, are the correiation iength exponents paralle
fnd perpendicular to the growing direction of the aggregate

Wsxs™, ®)

order to determine the distribution of dead trees one star 11]. Th ¢ be diff 0f It-affiai
the growing process following the specified set of rules an - 1Nese exponents may be cifierent for Sell-atiariso-
ropic) aggregates, while for self-similar objects=v, .

after some fixed time all growing points, i.e., all sites of the - . !
aggregate where further growth is still possible, are identified Assuming thaly is the t(_)tal number of p{irtlcles of the
regate, the average particle numigrer unit area of the

as seeds for these trees. Therefore, the number of such se D
becomes the initial number of trees. During the subsequer’?‘[u strate is given by
process, the competition between growing trees dominates
the dynamics. Some trees become déearen and eventu- N=N/LY, (6)
ally only a single tree may remain.

Within this context, the aim of this work is to perform an where particles grow on a-dimensional hypercubic sub-
extensive numerical investigation of the dynamics of evolv-strate of size L in é&-dimensional space.
ing trees of two growing processes, namely, random deposi- Defining the number of trees withparticlesNg(N) in the
tion with surface relaxatioflRDSR and ballistic deposition whole aggregate one has that
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h~N*, (16)
Nr=2 sN(N), M
s for h<L , wherey, is an exponenf11].

and the cluster size distributiony(N) that gives the prob- However, for length scales-h the aggregate is uniform
ability of having trees of size per unit area of the substrate N the remainingd lateral directions. This fact, in connection
to Egs.(6) and(16) gives[11]

is given by
no(N)=Ng(N)/LC. ®) D= '+d. (17)
Replacing Egs(6) and(8) in Eq. (7) gives[10,11] The rms height of the aggregate can be rewritten as
1 1
N=2 sn(N). 9 h=S- 2 hi=—0 > | X h?)Nsm), (18
s Nt 5 NLY 5 \iTs

During the competition between trees along the evolutionvhereh; is the distance of thigh particle from the substrate.
of the aggregate it may occur that the existence of largeraking into account that the average rms height of a tree of
neighboring trees may inhibit the growing of smaller onessize s is given by
This competing process ultimately leads to the death of some
trees that become "frozen” within the underlying aggregate. hz—l E h2

s ;

These prevailing large trees continue the competition within s &L (19
more distant trees in a dynamic process. Since this situation
takes place on all scales, it is reasonable to expect that thHeq. (18) can be rewritten as
cluster size distribution should exhibit a power-law behavior .
so that
h2== > sh2ny(N), (20)

N <5
Ng(N)~s~7f(s’/N), (10

. . . i where Eq.(8) has been used.
wherer is an exponent anf{y) is a scaling cutoff) function Replacing Eqs(4), (10), and (16) in Eq. (20) and per-

so that their asymptotic behavior is given By)~1 fory  oming some algebra, one obtains the scaling relationship

<1 andf(y)=0 fory>1. [11]
Substituting Eq.(10) in Eqg. (9) and after some algebra
one can obtainl0] 2v=—1+(2+2y—1)l0o. (21
o=2-T1. (11 Now, using Eqgs(11) and(17) it follows that
Furthermore, recalling that the competition among trees o=v/v=y(D—-d), (22

actually is a dynamic process evolving in time<{;), one o _
has that the survival time distribution of the treeg)(may  and substituting Eq22) in Eq. (11) one haq11]
also obey a simple power-law behavior given by =2 (D—d). (23

-7
et (12 The scaling relationshif23) links the exponent related
wherey is an exponent. Therefore, one can establish a reld® the tree size distribution to the correlation length exponent

tionship between the size and the survival tit the dead ©f the aggregate. It is interesting to notice that, is
trees so that absent in Eq(23) due to the fact that during the competitive

growth process larger trees prevent smaller ones from grow-
s~tX, (13)  ing. Scale invariance in the size distribution of the trges.
(10)] is a result of this competitive process that is mainly
where the exponentis given by governed by the tree highEq. (4)].
A typical example for the application of Eq23) is the
x=(r=1)/(y=1). (14 growth of compact aggregates whébe=d+ 1. So, Eq.(293)

Also, it is reasonable to expect that for the trbgst, so becomes

inserting this relation in Eq13) and comparing it with equa- T=2—y. (24)
tion Eq. (4) give
Also, using Eqgs(14), (15), and(23) one obtains
X= Y. (15)
. . . . y=1y. (25)
Let us now establish a relationship between the growing

trees and the properties of the aggregate. Assuming that the There is no reason to expect that a compact aggregate
aggregate is self-similaieven compagtwith fractal dimen-  may result from the addition of compact trees. In fact, the
sion D, its rms heighth is expected to scale as volume of trees of sizs (vg) scales as
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v~ hsWSD—1~SvH+(D—1)vL, (26) ing that any newly deposited particle belongs to the same
tree as that of the nearest neighbor particle where it is at-
and we define the following relationship between the volumedached. If the deposited particle has more than one nearest
and the number of particlas~s™, wheres is an exponent, neighbor belonging to different trees, one of them is selected
so one has at random and the particle is incorporated into that tree.
RDSR and BD aggregates are grown in the direction per-
y+(D-1)v, =, (27 pendicular tod-dimensional substrate, i.e., il 1) dimen-
, sions, using samples of different sizds®( with 1<d<5.
where for compact trees one has=1, while for noncom-  gjmyjation results are averaged over many different runs,

pact trees one has>1. , , depending orl. and d. A Monte Carlo time stegmcs in-
Identifying the parallel correlation length with(s) and  |,qves the deposition dt? particles.
the time withh(s), one hag13] The interface of these aggregates is defined as the set of
_ particles that are placed at the highest position of each col-
7= VH/VJ- . (28)

umn. So, the mean height of the interfdé&y. (1)] and the
Using Egs.(14), (15), (23), (27), and (28) for trees in a interface width Eq. (2)] can be calculated and both are mea-

compact aggregatéd(=d+ 1), we can obtain the following sured in lattice unit$LU). It is well known that these aggre-
relationships: gates are self-affine and the width of the growing interface

w(L,t) scales as Eq23) [4].
v=mz/(z+D-1), (29 In contrast to the microscopic details of the growing
mechanisms of the interface in both models, continuous
v, =ml(z+D-1), (300  equations focus on the macroscopic aspects of the roughness.
Essentially, the aim is to follow the evolution of the coarse-
=[(2—m)z+2(D—-1)]/(z+D—-1), (31 grained height functiom(x,t) using a well-established phe-
nomenological approach that takes into account all the rel-
and evant processes that survive at a coarse-grained level.
This procedure normally leads to stochastic nonlinear par-
y=(z+D—-1)/(7m2). 32 ial differential equations that may be written as follows

All these relationships establish links among exponent@’g’g'lz’14’1}3
that characterize the self-affine nature of the interface of the ah(x,t)
aggregate £= a/ 8) and those corresponding to the descrip- ———=G;{h(x,t)} +F+ n(x,t), (33
tion of the treeing process occurring in the bulk at

(v 7y,m). where the index symbolically denotes different processes,
Gi{h(x,t)} is a local functional that contains the various sur-

Ill. THE RDSR AND BD MODELS: SIMULATION face relaxation phenomena and only depends on the spatial
METHODS AND MESOSCOPIC EQUATIONS derivatives ofh(x,t) since the growth process is determined

In the random deposition with surface relaxati®DSR by the local properties of the surface. Alde,denotes the

model a particle is released from a random position abov&'€@n deposition rate ang(x,t) is the deposition noise that
the surface and falls vertically until it reaches the top of thedetermines the fluctuations of the incoming flux around its
selected column. Of course, such particle is initially located€an valuée. Itis usually assumed that the noise is spatially

at a distance larger than the maximum height of the interfacé2Nd temporally uncorrelated, so fluctuations are given by a

The deposited particle is allowed to relax to a nearest neighie@ussian white noise

bor column if the height of the neighboring column is lower (n(x,1))=0 34)

than that corresponding to the selected column. Further de- K '

tails on RDSR aggregates can be found in Refs8]. Con- 59

cerning the dynamics of tree formation, it is worth remem-

bering the procedure used to define a tree. In the case of the (n(x,t)n(x’,t’)>=ZCéd(x—x’)é(t—t’), (35)

RDSR model, a newly deposited particle is assumed to be-

long to the tree corresponding to the impingement site, bewhere the brackets denote ensemble averagigs the

fore its eventual relaxation. strength of the fluctuations, amtis the spatial dimension of
The ballistic depositionBD) model is rather simple to the surface.

describe: a particle is released from a random position above The RDSR model can be described by the Edwards-

the interface of length. Subsequently, the particle follows a Wilkinson equation given by4,8,12,16

straight vertical trajectory until it reaches the interface,

whereupon it sticks. In contrast to the RDSR model, in the ah(x,t)

BD model no further relaxation of the particle is considered. at

Snapshot configurations of BD aggregates, and further de-

tails on the deposition rules can be found in Ré#s9]. Let  wherev, plays the role of an effective surface tension, since

us also remember that, in this case, trees are formed assuthe v,V2h(x,t) term tends to smooth the interface. Equation

=F+1,V?h(x,t)+ 5(x.t), (36)
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(36) can be solved in Fourier space and the following values
of the exponents are obtaineg=2, a=(2—d)/2, and g
=(2—d)/4. So, there exists an upper critical dimensgn
=2 above which one hag=0 andB=0.

The BD model can be described by the Kardar-Parisi-

Zhang equation given bj9]
ah(x,t) A
o =F+vV2h+§(Vh)2+ n(x,t), (37

where\ plays the role of an effective lateral growth. In this
equation, the exponents satisfy the scaling relation

z+a=2, (38

as a consequence of Galilean invariance in the related Bur
gers equatiofil7]. In the usual field theory approach, a per-
turbation theory is defined with respect to the nonlinear term
(\). The corresponding renormalization group revgag]
that the physics of the KPZ is related to a strong coupling
fixed point, which is inaccessible by perturbative methods.
Except ford=1, where, thanks to a fluctuation-dissipation
theorem, an analytic solution is possible. In this case one ha
a=1/2, B=1/3, so thatz=3/2. Extensive numerical simu-
lations have been carried out for restricted solid on solid
models[19]. These are discrete models that belong to the
KPZ universality clas$20] and these studies show a gradual
decrease in the value at, without any evidence for an
upper critical dimension. In the same direction a recent study
performed using a nonperturbative renormalization of the
KPZ equation suggests a gradual decrease in the valae of
[21]. On the other hand, several analytical approade$
suggest an upper critical dimensidp=4 above which one
should havex=0.

IV. RESULTS AND DISCUSSION

n (N)

-
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FIG. 2. Log-log plots of the tree distribution functions corre-
sponding to the RDRS model in dimensionsd<5. (a) The tree

size distribution, where the sizeis given by the number of par-

. o ) ticles of each tregb) The survival time distribution, where the time
Figure 2 shows the tree distribution functions correspondis measured in seconds.

ing to the RDRS model in dimensionsld<5. The tree size
distribution[Fig. 2(a)] for d=1 exhibits a power law accord-
ing to Eq. (10) with exponent7=1.35+0.03. For higher

Results shown in Fig. 5 for the rms width of the trees

(wg) versuss are also fully consistent with the previous re-

dimensionsng also exhibits power law-behavior but the sults and are listed in the second column of Tables | and II.
Based on our numerical estimation of the exponenig
ality. A similar behavior is shown by the survival time dis- v, , and v we are in a condition to check the scaling rela-

sloper=1.50+0.01 becomes independent of the dimension-

tribution [Fig. 2(b)] that has slopey=1.54+0.03 ford=1

tionships discussed in Sec. Il that are summarized by Egs.

andy=2.00+0.03 ford=2, respectively. The measured ex- (24), (27), (28), (31), (32), and (38), where the latter only

ponents are listed in Table I.
The distribution functions of the BD model also exhibit

of RDSR, for bothng [Fig. 3(@] andn;, [Fig. 3(b)] the slopes

holds for the BD model.

The results obtained for the RDSR mod&hble ) show
power-law behaviofFig. 3]. However, in contrast to the case that the exponents, , v|, 7, andy are independent of the

dimensionality of the surface fod=2, as expected from

depend on the dimensionality. The measured exponents aFégs. 1—4. These results are consistent with the factdhat

listed in the fifth and ninth columns of Table II.

The behavior of the rms height of the trees as a functiorclass.
Inserting the exact value=2 for the EW universality
and BD, respectively. Again, nice power laws are observed irtlass in Eq.(31) the “theoretical” estimation ofr can be
all cases. For the RDSR model a clear change in the slope @btained(seventh column of Table),l which is in excellent

of the tree sizes is shown in Figs. &) and 4b) for RDSR

observed betweed=1 andd=2, where for the higher di-

=2 is the upper critical dimension of the EW universality

agreement with the numerical data. Also, inserting the mea-

mensions the slopes are independent of the dimensionalitgured values of| in equation(24) (see the sixth column of
(see third column of Table).l For the BD model the slopes Table |) excellent agreement with the measured exponents is

are different in all dimension&ee third column of Table )l
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TABLE |. List of exponentsy, , v, 7 (fifth column) and y (eighth columin measured for the RDSR
model for dimensions £d=<5. The values of theoretical estimationsmoénd y are obtained taking=2 in
Eq. (31) (seventh columnand Eq.(32) (tenth colummn, respectively. For these estimations=1 for d<2
andw=5/4, 3/2, 7/4 ford=3,4,5 have been used, respectively. The values obtained using Eq27) are
shown in the fourth column. The values ofind y obtained using Eq$24) and(25) are shown in the sixth
and ninth columns, respectively.

D vy V| 77 T 7[Eq.(24] (1) Y vy [Eq.25] (Y
1+1 0.352) 0.631) 0.992 1.353) 1.371) 413 1.543) 1.593) 312
2+1 0272 0501 1.024) 1.491) 1.50(1) 32 1.985) 2.00(4) 2
3+1 0262 0501 1.286) 1.503) 1.50(1) 32 2.0G2) 2.00(4) 2
4+1 0252 0501 1508 1.501) 1.50(1) 32 1.992) 2.004) 2
5+1 0.251) 0.491) 1.744) 1.502) 1.51(1) 312 1.994) 2.044) 2

cellent when comparing theoretical and estimdted. (25)]

the trend exhibited by the other exponents. In fact, while

values ofy, which is shown in the tenth and ninth columns ~1 for d<2, such an exponent increases monotonically
of Table I, respectively.
For the case of the RDSR model it is interesting to noticement of 1/4 in for each additional dimension is estimated.

that the exponentr (fourth column of Table )l departs from

n (N)

=T T T LU l T T T L I T T T
o
E o A"" 3 A d=1 =
b o d=2
E 9 e s d=3 3
" - o d=4 ]
10 8 “o.. A v d=5
L o Tt J
- a, A
a - :_ v “o.., “A. _:
10 ° 0. Y
F o ]
10°F -
(b) | s
10! 107 10°

FIG. 3. Log-log plots of the tree distribution functions corre-
sponding to the BD model in dimensionssti<5. (a) The tree size
distribution where the sizeis given by the number of particles of

with the dimensionality fod>2. Roughly, an average incre-

The value ofr=1 corresponds to the development of com-
pact treegsee Eqs(26) and(27)], so it is concluded that for
d>2 the trees leading to the formation of RDSR aggregates
are noncompact objects. Therefore, the branches of the trees
become interweaved forming complex patterns.

Our results for the BD model are listed in Table Il. In this
case the measured exponents (v, 7, andy) depend on
the dimensionality, as expected from Figs. 2—5. The mea-
sured values of (fifth column of Table 1) are in agreement
with the estimation obtained using E@4) (sixth column of
Table Il) for d<4. Ford=5 this estimation presents a small
deviation due to the large error involved in the evaluation of
the exponent. However, a slight incrementzofvith the di-
mensionality is found in both casgthe measured exponent
and Eq.(24)]. This result is in contrast to the conjecture
stating thatd=4 may be the upper critical dimension of the
KPZ universality clas§19]. Furthermore, using Eqg31)
and(38) and the values ofr reported in Ref[25] two addi-
tional comparisons can be made: inserting the valueg of
obtained using renormalization group calculatignameri-
cal simulation in Eq. (31) gives the values of listed in the
seventh(eighth column of Table Il. In both cases, excellent
agreement with the measured exponents is found.

We have to recognize large errors in our evaluationy of
for the BD model[see Fig. 2b)] that prevent reliable esti-
mations ford=4. However, comparisons with results ob-
tained using Eq(25) (tenth column of Table )| renormal-
ization group calculation(11th column of Table )l and
numerical evaluatioril2th column of Table ) exhibit the
trend already observed by our direct measurement. of

It should also be noticed that~1 (within error bar$
pointing out that BD aggregates are built up by compact
trees at least fod<4, in contrast with our previous results
obtained for RDSR aggregates for2.

V. CONCLUSIONS

Extensive numerical evidence is provided showing that

each tree(b) The survival time distribution, where the time is mea- the bulk of two typical growth models, belonging to both the

sured in seconds.

KPZ and EW universality classes, can be rationalized in
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TABLE II. List of exponentsy, , v, 7 (5th column, andy (Sth column measured for the BD model for dimensionsd<5. The
estimations performed using Eq24) and(25) are shown in the 6th and 10th columns, respectively. The exponents obtained usit@lEqs.
(32), and(38), w=1 anda values obtained by renormalization group calculatiees), and numerical simulation®\S) reported in Ref[21]
are shown in the 7th, 8th, 11th, and 12th columns. The expoméstevaluated using Ed27) (4th column.

D v, V| T T 7[Eq.(249] 7(RG) 7 (NS) v v[Eq.(25] vy (RG) v (NS)
1+1  04Q1) 0601 1.002) 1401  1.401) 1.40 140 1.7 1.663) 1.66 1.66
241 0291) 0451 1.032) 1571  1.551) 1.54 155  2.8) 2.225) 2.22 2.24
3+1 0.232) 0.391) 1.076) 1.651) 1.621) 1.63 1.64 3.2 2.637) 2.75 2.77
441 0.214) 0.342) 1.1816) 1.702) 1.662) 1.69 1.70 2.9415) 3.27 3.30
5+1 0.334) 1.753) 1.674) 1.73 1.73 3.B) 3.78 3.76

terms of a treeing process. Scaling relationships, linking exd=4) while RDSR trees are noncompact objects dor2
ponents relevant to the treeing process with standard dyleading to interweaved complex structures. Based on the va-
namic exponents are reviewed and tested numerically in diidity of Eqgs. (29)—(32), and since above the upper critical
mensions id<5. So, our main conclusions are dimension the exponentg, v, , 7, andy remain constant
summarized in Tables | and Il where all the measured expofor self-similar aggregates, it can be stated that above the
nents are listed and compared to theoretical predictions. It igpper critical dimension the change in the dimensionality of
concluded that BD trees are compact objdetsleast up to
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FIG. 5. (a) Log-log plots of rms width of the trees as a function
FIG. 4. (a) and(b) Log-log plots of the rms height of the trees as of the tree sizes for the RDSR model(b) Log-log plots of the rms
a function of the tree sizefor the RDSR model and the BD model, width of the trees as a function of the tree ss&®r the BD model.
respectively. The rms height is measured in LU and the sime  The rms width is measured in LU and the siés given by the
given by the number of particles of each tree. number of particles of each tree.
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the aggregate implies that must also change. Therefore, we lization of the images of the aggregates. Another field of
conjectured that all kinds of self-affine aggregates abovepplication is the study of polycrystalline thin film growth by
their upper critical dimension can be rationalized in term ofscanning tunneling microscop®5,26 and atomic force mi-
the superposition of noncompact trees. croscopy[27]. In these cases the direct evaluation of the
Summing up, it is shown that the evolution of the treeingnumber of crystallites as a function of the deposit height
statistics is a suitable method for the characterization of th%ccounts for the number of frozen Crysta"i(é_e_, the trees
growing aggregates with promising applications in experi-of the growing aggregatand the crystallite size distribution
mental situations. In fact, it is well known that the electro- can be evaluated.
chemical deposition method in thin cells provides a rather
simple experimental setup for the observation of a wide va-
riety of self-affine growing pattern3,24]. In this case the
dynamics of growing trees leading to frozen structures can
easily be observed and the evaluation of the tree size distri- This work was financially supported by CONICET,
bution can be obtained straightforwardly after proper digita-UNLP, and ANPCyT(Argentina.
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